38 research outputs found

    The structures beneath submarine methane seeps : seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand

    Get PDF
    The role of methane in the global bio-geo-system is one of the most important issues of present-day research. Cold seeps, where methane leaves the seafloor and enters the water column, provide valuable evidence of subsurface methane paths. Within the New Vents project we investigate cold seeps and seep structures at the Hikurangi Margin, east of New Zealand. In the area of Opouawe Bank, offshore the southern tip of the North Island, numerous extremely active seeps have been discovered. High-resolution seismic sections show a variety of seep structures. We see seismic chimneys either characterised by high-amplitude reflections or by acoustic turbidity and faults presumably acting as fluid pathways. The bathymetric expression of the seeps also varies: There are seeps exhibiting a flat seafloor as well as a seep located in a depression and small mounds. The images of the 3.5 kHz Parasound system reveal the ear-surface structure of the vent sites. While highamplitude spots within the uppermost 50 m below the seafloor (bsf) are observed at the majority of the seep structures, indicating gas hydrate and/or authigenic carbonate formations with an accumulation of free gas underneath, a few seep structures are characterised by the complete absence of reflections, indicating a high gas content without the formation of a gas trap by hydrates or carbonates. The factors controlling seep formation have been analysed with respect to seep location, seep structure, water depth, seafloor morphology, faults and gas hydrate distribution. The results indicate that the revailing structural control for seep formation at Opouawe Bank is the presence of numerous minor faults piercing the base of the gas hydrate stability zone

    Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea

    Get PDF
    A bottom simulating reflector (BSR), which marks the base of the gas hydrate stability zone, has been detected for the first time in seismic data of the Black Sea. The survey area is in the northwestern Black Sea at 44°–45°N and 31.5°–32.5°E. In this paper, seismic wide-angle ocean bottom hydrophone (OBH) and ocean bottom seismometer (OBS) data are investigated with the goal to quantify the gas hydrate and free gas saturation in the sediment. An image of the subsurface is computed from wide-angle data by using Kirchhoff depth migration. The image shows the BSR at 205–270 m depth below the seafloor and six to eight discrete layer boundaries between the seafloor and the BSR. The top of the hydrate layer and the bottom of the gas layer cannot be identified by seismic reflection signals. An analysis of traveltimes and reflection amplitudes leads to 1-D P-wave velocity–depth and density–depth models. An average S-wave velocity of 160 m s−1 between the seafloor and the BSR is determined from the traveltime of the P to S converted wave. The normal incidence PP reflection coefficient at the BSR is −0.11, where the P-wave velocity decreases from 1840 to 1475 m s−1. Velocities and density are used to compute the porosity and the system bulk modulus as a function of depth. The Gassmann equation for porous media is used to derive explicit formulae for the gas hydrate and free gas saturation, which depend on porosity and on the bulk moduli of the dry and saturated sediment. A gas hydrate saturation–depth profile is obtained, which shows that there is 38 ± 10 per cent hydrate in the pore space at the BSR depth, where the porosity is 57 per cent (OBS 24). This value is derived for the case that the gas hydrate does not cement the sediment grains, a model that is supported by the low S-wave velocities. There is 0.9 or 0.1 per cent free gas in the sediment below the BSR, depending on the model for the gas distribution in the sediment. The free gas layer may be more than 100 m thick as a result of a zone of enhanced reflectivity, which can be identified in the subsurface image

    Acoustic and visual characterisation of methane-rich seabed seeps at Omakere Ridge on the Hikurangi Margin, New Zealand

    Get PDF
    Six active methane seeps and one cold-water reef that may represent a relict seep were mapped at Omakere Ridge on New Zealand's Hikurangi Margin during cruises SO191 and TAN0616. Hydroacoustic flares, interpreted to be bubbles of methane rising through the water column were identified in the area. The seep sites and the cold-water reef were characterised by regions of high backscatter intensity on sidescan sonar records, or moderate backscatter intensity where the seep was located directly below the path of the sidescan towfish. The majority of sites appear as elevated features (2–4 m) in multibeam swath data. Gas blanking and acoustic turbidity were observed in sub-bottom profiles through the sites. A seismic section across two of the sites (Bear's Paw and LM-9) shows a BSR suggesting the presence of gas hydrate as well as spots of high amplitudes underneath and above the BSR indicating free gas. All sites were ground truthed with underwater video observations, which showed the acoustic features to represent authigenic carbonate rock structures. Live chemosynthetic biotic assemblages, including siboglinid tube worms, vesicomyid clams, bathymodiolin mussels, and bacterial mats, were observed at the seeps. Cold-water corals were the most conspicuous biota of the cold-water reef but widespread vesicomyid clam shells indicated past seep activity at all sites. The correlation between strong backscatter features in sidescan sonar images and seep-related seabed features is a powerful tool for seep exploration, but differentiating the acoustic features as either modern or relict seeps requires judicial analysis and is most effective when supported by visual observations

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Seismic Characterization of Marine Gas Hydrates and Free Gas at Northern Hydrate Ridge, Cascadia Margin

    Get PDF
    Gashydrate treten massiv in den meeresbodennahen Sedimenten der Kontinentalränder auf. Kenntnisse über die Menge des in Hydraten gespeicherten Methans und über ihre räumliche Verteilung sind von großer Bedeutung in Hinblick auf eine potenzielle wirtschaftliche Nutzung, auf ihre Auswirkung auf das globale Klima sowie auf ihren Einfluß auf die Meeresbodenstabilität. Die in dieser Arbeit präsentierten Analysen beinhalten die Bearbeitung und Auswertung der mit Ozeanboden-Hydrophonen/-Seismometern (OBH/S)-Instrumenten und Oberflächenstreamern aufgezeichneten multifrequenten seismischen Daten und erlauben eine umfassende Charakterisierung der Gashydrat und freies Gas haltigen Sedimente am nördlichen Hydratrücken des Cascadia-Kontinentalrandes. Mit Hilfe von synthetischen Seismogrammen wird ein vollständiges Modell der elastischen Parameter unterhalb eines OBS entwickelt. Ein gesteinsphysikalischer Ansatz ermöglicht eine lokale Abschätzung der Hydrat- und Gassättigungen

    Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge

    No full text
    High-resolution multi-frequency and multi-component seismic data were acquired at northern Hydrate Ridge in the accretionary complex of the Cascadia subduction zone to quantify the amount of hydrate and free gas in the sediment. We present a detailed local analysis of four component (4C) ocean bottom seismometer (OBS) data and show the importance of multi-frequency and shear wave data for determining hydrate reservoir properties. A detailed model of the elastic parameters at the bottom simulating reflector (BSR) is developed by using synthetic seismogram modelling. The main focus in this study is an amplitude-versus-offset (AVO) analysis of shear waves, which originate by PS-conversion at the BSR in 73 m below the seafloor (bsf). The AVO analysis enables the determination of the shear wave velocity above the BSR. A velocity of 400 m/s indicates that the presence of gas hydrate in the pore space significantly increases the shear modulus of the sediment above the BSR. Information about the attenuation and the shape of the BSR transition zone is obtained from the frequency-dependent reflection amplitudes of the BSR. The BSR is shown to be a gradual type transition zone of 1.5–2.5 m thickness. Average Q factors of Qp = 150 for P-waves and of Qs = 35 for S-waves are determined within the gas hydrate stability zone (GHSZ). The low Qs factor points to a pronounced attenuation of S-waves in the uppermost sediments. From rock physics modelling, the hydrate concentration is estimated to vary locally between 3–12% of the pore space. Below the BSR, free gas concentrations of 0.5% and 8% are determined for homogeneous and patchy distributed gas, respectively
    corecore